
Author: Ben Haest 1 2019-01-17

Explanatory Comments to the State Machine and the Advanced Command Set

Intro

The GUS standard Interface up to now (version 1.0) has been developed for the “simple” automation
of a combined test (Climatic Chamber and Shaker). How an application at the higher level would take
over the control and supervision has not been an issue, up to now.

The defined statuses of a test sequence are mainly tailored to the test itself. The original idea was
that the supervisory program would not take control of the test. A test is controlled by the control
system of the devices at the lower level, while the supervisory program controls the devices. For this
reason some statuses (9: device closed and 0: device open) are missing in the first release of the GUS
standard interface (version 1.0). These statuses are needed to control and to supervise the devices.

From the other side, some statuses sometimes are artificial, while every device functions differently.
In this way the statuses w.r.t. the test sequence eventually do not match the statuses of a device,
because the respective device simply does have a specific status. Nevertheless the statuses and their
transitions are very important to control a device at any time and to identify potential problems in
the setup, the synchronization and the execution of a test. In addition to the statuses of the devices,
the polling of certain parameters or variables of the devices is mandatory to be able to synchronize
more advanced combined tests. Version 2.0 of the GUS Standard Interface proposes an advanced
command set to make the communication about the parameters and variables of the devices
possible.

Overview of the STATUSes of a DEVICE

Status 9: closed

For the supervisory program it is important to know if a device is available or not. It is important to
know if the communication with the controller of a device works or not. The command
“GUS_Open_App” will load the driver. The parameter of the command is the name of the driver, as
registered by the Windows® operating system.
The response must be a string: “ACK: device serial/version number”. The device that communicates
by means of the selected driver is in the state 9 (closed). The communication with the device has not
been set up yet. The status value is 9 and the device is not available yet.

 The App is closed again by means of the “GUS_CloseApp” command. For the “GUS_CloseApp”
command no response from the device is expected.

Status 0: open

By means of the command “GUS_OpenDevice” the communication with the device is established.
When eventually the communication software is able to communicate with many devices (e.g.
S!MPATI communicates with many climatic chambers) the device number has to be given as a
parameter of the command (see definition of the GUS standard). Hence the device is identified and
the one-to-one communication is established. The status changes to 0 (when the device is available
and can be used for the test). After the positive confirmation (“ACK”) and the status changed from 9
(closed) to 0 (open), the device is now available for the test.



Author: Ben Haest 2 2019-01-17

When the communication with the device cannot be established, then the status remains 9. The
device does not become available for the test.

With the command “GUS_CloseDevice” the communication is stopped. The connection with the
device does not exist anymore. The status changes from 0 (open) to 9 (close). The device is not
available anymore.

Status 1: ready

With the command “GUS_PrepareTest” the test file (or the directory) of the respective device is
loaded. Some devices do not open the test file; instead they require the information in which
directory the test definition and the test parameters are stored. The status changes from 0 (open) to
1 (ready): the device is available and the test specifications have been loaded. The device is
operational and is ready to start the test. The device responds with the string “ACK”.
In the event the test cannot be loaded (the test file or the test directory do not exist or cannot be
found) the response must be the string “ERR”. The state remains 0 (open). The device is not ready to
start the test.

The command “GUS_StartTest” starts the test and the status of the device changes from 1 (ready) to
2 (pre-test running). Several devices do not perform a pre-test when a test starts. For that reason it
is possible – and allowed – that the status changes immediately from 1 (ready) to 3 (running).

The command “GUS_CloseTest” closes the test file and the status changes from 1 (ready) to
0 (open). The test is not loaded anymore, but the device remains available and the communication
with the device is still established.

Status 2: Pre-Test running

When the pre-test successfully has been finished the status changes from 2 (pre-test running) to
3 (running).

When the device is in the status 2 (pre-test running) also the command “GUS_StopTest” can be
given. In this way the device can be stopped at any time (e.g. emergency stop). The command
“GUS_StopTest” brings the device back into the status 1 (ready). The test file is still loaded.

As already mentioned, not all devices make a pre-test or self-check when a test starts. Eventually a
device never reaches the status 2 (pre-test running) and changes to the status 3 (running)
immediately.

Status 3: running

After the device reached the status 1 (ready) and it received the command “GUS_StartTest” the test
starts and the device reaches the status 3 (running). By means of the command “GUS_StopTest” the
test can be stopped. The status changes to 1 (ready). The test can be started again.

A test can be paused and can be continued by means of the commands “GUS_PauseTest” and
“GUS_ContinueTest” respectively.



Author: Ben Haest 3 2019-01-17

Status 4: finished

When the test finishes without disruption the status changes to 4 (finished). A device only reaches
the status 4 when the test successfully could be run completely.

Note: when a test is running and a failure occurs, the device goes into the state 5 (pause). That gives
the operator the opportunity to fix the problem and to continue the test, or to stop the test.
At this point we have to make a distinction between a failure and an error. A failure is considered to
be a malfunction that eventually can be solved by the operator. An error typically is a machine
malfunction where e.g. the interlock tripped, indicating a more serious problem or an emergency
stop that cannot be fixed quickly by the operator.

In the status 4 (finished) the test file is still loaded. The command “GUS_CloseTest” closes the test
file and brings the device back into the status 0 (open). A new test can be prepared.

The command “GUS_StopTest” brings the device back into the status 1 (ready). The test can be
started again.

Status 5: pause

After the command “GUS_PauseTest” the device reaches the state 5 (pause). Sometimes, also in this
state, the test has to be stopped or has to be interrupted. The command “GUS_StopTest” brings the
device back into the state 1 (ready). The test is still loaded. The test can be started again, or can be
stopped as described above.

During the state 5 (pause) the test time and further test parameters will not be reset. The test can
be continued by means of the command “GUS_ContinueTest”. Then e.g. the test time will continue
to be updated. During the “pause” time the elapsed time still continues to count.

The command “GUS_StopTest” will stop the test and bring the device back to the state 1 (ready).

Status -1: error

In every state a problem can occur. When the device is in the state 1, 2, 3, 4 or 5 and a device failure
(e.g. hardware malfunction) occurs, then the state changes to -1 (error). So the state -1 really relates
to the malfunction of the device. The test is still loaded. The command “GUS_CloseTest” closes the
test file and the device turns into the state 0 (open). The communication with the device is still
running but the test is not loaded anymore.

The “error” state typically is due to a hardware problem (broken power module of the power
amplifier / Emergency stop / Interlock tripped / Max. temperature of the climatic chamber exceeded
/ …).

“GUS_StopTest” command

This command brings the device back to the state 1 (ready). This command is available when the
device has the state 2 (pre-test running), 3 (running), 4 (finished) or 5 (pause). The test remains still
loaded.



Author: Ben Haest 4 2019-01-17

“GUS_CloseTest” command

This command brings the device back to the state 0 (open). This command is available when the
device has the state 1 (ready), 4 (finished) or -1 (error). The test file will be closed.

Command not matching a state

In the event a command to a device is given, different from one of the commands for a given state
as described in the document “State Machine”, the state of the device will not change.
e.g. when the device is in the 1 (ready) state and the command “GUS_PauseTest” is given, the device
must respond with an error: “ERR” instead of “ACK”. The device remains in the actual state 1 (ready).
The actual implementation of the higher level control program will read every “ACK” string as a
positive acknowledgment of the given command. Any other string will be recognized as being an
error, meaning the given command was not valid for the actual state of the device. The device will
not change its actual state.

Command Acknowledgement

After the successful operation, every command has to be confirmed with the string “ACK”, unless
defined otherwise. When the operation cannot be completed successfully, the response of the
device must be the string “ERR”.

Minimum Command Set

For the automatic start and stop operation by means of a supervisory program, including the
supervision of the devices during the test, following commands define the minimum command set
that have to be implemented into the GUS standard interface of the device:

GUS_Open_App
GUS_CloseApp
GUS_OpenDevice
GUS_CloseDevice
GUS_PrepareTest
GUS_StartTest
GUS_StopTest
GUS_PauseTest
GUS_ContinueTest
GUS_CloseTest
GUS_GetStatus

Further details are described in the appendix II.

By means of the minimum command set, a supervisory program can establish the communication
with a device, let the device load its test file, start the test etc. When the communication with
several devices has been established, the supervisory program can start the tests of these devices
(shaker, climatic chamber, control equipment, etc.), stop or pause the test of a device, continue a
test or just stop all tests when an error of a device has been reported. It is the minimum
requirement to run a combined test without supervision of an operator.



Author: Ben Haest 5 2019-01-17

Advanced Command Set

When the supervisory program must be able to get the value of certain device parameters or
variables, or when the synchronization of a test requires more detailed information from the
devices, the advanced commands must be implemented.
The advanced command “GUS_SetParameter” even allows the supervisory program to set a certain
value in the device, when the respective device parameter (e.g. a setpoint) has been declared
available and modifiable by the device.

GUS_GetDeviceInfo
GUS_GetInfo
GUS_GetParameter
GUS_SetParemeter

Through these commands, the information shared between the supervisory program and the
devices, is more complex and requires a structure that defines the format and the type of
information, EU (engineering unit), limits, restrictions, etc.

Therefore the communication of the commands listed above is structured into an xml format.
XML (Extendible Markup Language) is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable. It is defined by the
W3C's XML 1.0 specification and by several other related specifications, all of which are free open
standards.

An xml schema defines the rules, how the xml language of the messages between the supervisory
program and the devices is structured. The xml schema is used by both the supervisory program and
a device to Code and Decode (hence the name “CODEC”) the xml formatted stream of data or
messages. The CODEC has to fulfill the rules of the xml schema.

Note: an xml file which is a schema has the extension “.xsd”. The proposed schema for the advanced
command set is found in the file “GusDeviceInfo.xsd”. See also appendix IV for detailed information
on the schema.



Author: Ben Haest 6 2019-01-17

Principle of operation:

a. The supervisory program sends the command “GUS_GetDeviceInfo” to the device. The
device responds with an xml string that defines the information which can be shared
between the supervisory program and the device. The contents is a structured list of names
of the variables and device parameters, their respective restrictions, limitations, engineering
unites, if these device parameters or variables or read-only or not, etc.

b. With the command “GUS_GetInfo” the device responds with the actual values of all device
parameters and variables that had been declared before as a response to the
“GUS_GetDeviceInfo” command.

c. The command “GUS_GetParameter” defines uniquely the device parameter or the variable
for which the device has to send back the actual value. For more detailed information, see
appendix V.

d. The command “GUS_SetParameter” defines uniquely the device parameter or variable and
its value which has to be set by the device. The command “GUS_SetParameter” allows the
supervisory program to take control of the device properties: to define a new setpoint, to
open or close a relay, to set the value of an analog output, etc. For more detailed
information, see appendix V.

XML format:

References: https://en.wikipedia.org/wiki/XML and http://www.w3schools.com/xml/xml_whatis.asp

The definitions above will be followed for the implementation of the advanced command set. For
more details on the xml format: see appendix III.

The appendix IV gives a detailed description of the “Definition of the Parameters in the xml files of
the advanced command set”.

A detailed description of the advanced command set is given in the appendix V. It describes the
format of the xml file to exchange the information between a device and the supervisory program.

 Time and Date Format

For the coding and the representation of the time and date in the xml files, the standard ISO 8601
will be followed.

More details can be found on https://en.wikipedia.org/wiki/ISO_8601

An overview of the general principals is given in the appendix VI.



Author: Ben Haest 7 2019-01-17

Appendix I: State Machine



Author: Ben Haest 8 2019-01-17

Overview of the allowed transitions: “state from” to “state to”

Notes:
END : when the device is in the state 3 (running), at normal end of the test, the state changes to 4
(finished).

ERR : When the device is in the state 1 (ready), 2 (pre-test running), 3 (running), 4 (finished) or 5
(pause) and an error occurs, the state changes to -1 (error). For the definition of “error”: see
explanatory text above. An error typically is a hardware failure of a device which indicates a
malfunction of the device that cannot easily be solved.

State 6 : “Busy”

In the standard, the state 6 (busy) was introduced for any event where the device was “busy” doing
something, not immediately related to an actual state. E.g. opening a file, writing data to disk, is
busy with a transition,…  This state has not been defined as a “unique” state, and as it has been
interpreted, does not relate to a unique condition of a device. The state can be implemented into
the interface of a device, but will be ignored by the higher level supervisory program. When the
state 6 (busy) is sent by the device to the supervisory program, the latter will wait until the device
changes to one of the other states.

At this time, when the state 6 (busy) would occur, the potential risk is that the device remains in the
6 (busy) state, the device “hangs”, and cannot be recovered.

State 9 0 1 2 3 4 5 6 -1
to closed open ready pre-test

running
running finished pause busy error

9 closed X 1
0 open 2 X 3
1 ready 8 X 4 4 ERR
2 pre-test running 5 X ERR
3 running 5 X END 6 ERR
4 finished 8 5 X ERR
5 pause 5 7 X ERR
6 busy X

-1 error 8 5 X

1 GUS_OpenDevice
2 GUS_CloseDevice
3 GUS_PrepareTest
4 GUS_StartTest
5 GUS_StopTest
6 GUS_PauseTest
7 GUS_ContinueTest
8 GUS_CloseTest

state from



Author: Ben Haest 9 2019-01-17

Appendix II: Minimum Set of Commands

Command Parameter included
in the command

Response
Format

Response
(success)

Response
(Fail)

GUS_Open_App Driver name string ACK ERR
GUS_CloseApp none
GUS_OpenDevice Device ID (number) string ACK ERR
GUS_CloseDevice string ACK ERR
GUS_PrepareTest Path\Test profile string ACK ERR
GUS_StartTest string ACK ERR
GUS_StopTest string ACK ERR
GUS_PauseTest string ACK ERR
GUS_ContinueTest string ACK ERR
GUS_CloseTest string ACK ERR
GUS_GetStatus string State Number(*) ERR

(*) according to the state machine.



Author: Ben Haest 10 2019-01-17

Appendix III: xml format

XML documents consist entirely of characters from the Unicode repertoire.

For the list of valid characters: consult page https://en.wikipedia.org/wiki/Valid_characters_in_XML

Well-formed Documents

The XML specification defines an XML document as a well-formed text – meaning that it satisfies a
list of syntax rules provided in the specification. Some key points in the fairly lengthy list include:

The document contains only properly encoded legal Unicode characters
None of the special syntax characters such as < and & appear except when performing their
markup-delineation roles
The begin, end, and empty-element tags that delimit the elements are correctly nested, with
none missing and none overlapping
The element tags are case-sensitive; the beginning and end tags must match exactly.
Tag names cannot contain any of the characters !"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space
character, and cannot start with -, ., or a numeric digit.
A single "root" element contains all the other elements.

Escaping

XML provides escape facilities for including characters that are problematic to include directly.
For example:

The characters "<" and "&" are key syntax markers and may never appear in content outside
a CDATA section.
Some character encodings support only a subset of Unicode. For example, it is legal to
encode an XML document in ASCII, but ASCII lacks code points for Unicode characters such
as "é".
It might not be possible to type the character on the author's machine.
Some characters have glyphs that cannot be visually distinguished from other characters:
examples are

o non-breaking space (&#xa0;) " "

compare space (&#x20;) " "

o Cyrillic Capital Letter A (&#x410;) " "

compare Latin Capital Letter A (&#x41;) "A"

There are five predefined entities:

&lt;  represents: <
&gt; represents: >
&amp;  represents: &
&apos;  represents: '
&quot;  represents: "



Author: Ben Haest 11 2019-01-17

All permitted Unicode characters may be represented with a numeric character reference. Consider
the Chinese character " ", whose numeric code in Unicode is hexadecimal 4E2D, or decimal 20013.
A user whose keyboard offers no method for entering this character could still insert it in an XML
document encoded either as &#20013; or &#x4e2d;. Similarly, the string "I <3 Jörg" could be
encoded for inclusion in an XML document as "I &lt;3 J&#xF6;rg".

"&#0;" is not permitted, however, because the null character is one of the control characters
excluded from XML, even when using a numeric character reference. An alternative encoding
mechanism such as Base64 is needed to represent such characters.



Author: Ben Haest 12 2019-01-17

Appendix IV: Definition of the Parameters in the xml schema of the advanced command set

Reference: the file GusDeviceInfo.xsd

Following the proposal for the GUS standard version 2.0, the variables and the parameters that
define a device are put together in groups:

The number of groups is not limited. Typically the first group contains the general information about
the device like its name, manufacturer, type or model, etc. The second group contains the control
parameters and variables (like the setpoint, actual value, etc.), the third group contains the
additional I/O’s and so on. Each group must have a Name attribute. The value of this attribute (=
name of the group) should be unique for all Groups defined in the xml. Groups are used for logically
grouping Attributes (= device parameters or variables) and for ‘namespacing’ purposes (uniquely
identifying an Attribute with the same Name).

Groups contain one or more Attributes. Also each Attribute must have a Name attribute. The value
of this attribute should be unique for all Attributes defined in the Group it belongs to. The control
program addresses the Attribute (= device parameter or variable) by its Name (combined with the
Group Name). An Attribute can be defined as read-only or not, specifying if its value can be changed
by the supervisory program. For some examples: see appendix V, “GUS_GetParameter” and
“GUS_SetParameter”.



Author: Ben Haest 13 2019-01-17

An Attribute has an element called Type of which the type can be: Boolean, Integer, Decimal, String
or Date. Each type will be discussed in this section.

The Boolean type only can be 0 or 1, false or true.

The Integer type, next to its restrictions like the minimum and maximum value, total number of
digits and eventually a restricted number of values, also can be assigned an EU (engineering unit).

The definition of a Decimal type is similar to the integer type, except for the fact that also the
number of fractional digits can be defined. For many applications it makes sense to restrict the
number of fractional digits to 1 (temperature, humidity, gRMS, …).



Author: Ben Haest 14 2019-01-17

The definition of a String is straight forward. Sometimes it makes sense to limit the possible contents
of the communicated messages by a predefined set of text strings. Therefore the use of the
enumeration makes sense.

The formatting of the Date is described in the appendix IV. The standard as described in the ISO
8601 is followed. Also the value of the date can be restricted.

Finally the type of an Attribute can be a ComplexType: the purpose of this type is to make nested
attributes. The value of the Name of each (nested) attribute should be unique for all Attributes
defined in the ComplexType it belongs to.



Author: Ben Haest 15 2019-01-17

Appendix V: Preliminary Information about the advanced command set

GUS_GetDeviceInfo

When the supervisory program sends this command to a device, the device responds with an xml file
that contains the definition of all available parameters of the device. In the proposed scheme of the
xml files for both the shaker and the climatic chamber following groups are defined:

DeviceInfo: contains the general information about the device. Name, manufacturer, type,
model, serial number and remark.
ControlledValues: setpoint and actual value controlled by the device (gRMS, temperature,
humidity,…). A setpoint can be set by the supervisory program or can be read-only.
Measurements: additional I/O’s available in the device. These I/O’s can be analog or digital,
can be set or can be read-only, used for additional control or measurements.
Operation: these device parameters specify which test is running (e.g. sine, random etc. for
the shaker system and temperature, humidity, etc. for the climatic chamber).
Message: the messages defined in this group add additional information to the general
communication between the supervisory program and the device: alerts, alarms, etc.
Testing: the set of device parameters add information to the test running by the device:
elapsed time, remaining time, step number in the test program, repeats, etc.

Detailed examples can be found in the files “Gus_Device_Shaker_V01.xml” and
“Gus_Device_Chamber_V01.xml” as an example for the shaker system and the climatic chamber
respectively.

It must be noted here, that the list of information can be shortened or extended. The xml file
structure is flexible to add new parameters that are not defined in the examples, or to leave out
parameters that are not available.

When the device responded with this xml file, the supervisory program knows the definition of all
parameters that are available and can be sent or received by the device. The xml file defines the
format, eventual restrictions, engineering unit, etc. for each parameter.

GUS_GetInfo

The command demands the actual values of the parameters available from the device. The device
responds to the supervisory program with an xml file, structured in the same way as described
above (GUS_GetDeviceInfo) but this time only with the list of parameters and their respective
values. Of course, the values must adhere to the formats set forward in the xml file, sent as the
response to the “GUS_GetDeviceInfo” command.

GUS_GetParameter

Instead of requesting all information at once with the command “GUS_GetInfo” in many cases it
makes sense to ask for the value of one specific device parameter or variable. The command
“GUS_GetParameter” allows the supervisory program to ask the device to report one specific value.



Author: Ben Haest 16 2019-01-17

The parameter of the command (= call by the supervisory program) is a string that defines uniquely
the device parameter or variable for which the actual value is requested. The format of the string is
in the xml format. The contents, name and structure, has been defined by the device in the response
to the command “GUS_GetDeviceInfo”.

As an example to ask for the actual (controlled) temperature of the climatic chamber:

<Device>
<ControlledValues>

<Temperature>
<CurrentValue></CurrentValue>

</Temperature>
</ControlledValues>

</Device>

E.g. In the example above, the parameter (= string) of the command “GUS_GetParameter” sent to
the climatic chamber to get the actual value of the temperature should look like:

<Device><ControlledValues><Temperature><CurrentValue></CurrentValue></Temperature></Cont
rolledValues></Device>

The device answers with the same structure to identify the parameter, but this time including the
actual value of the parameter (in the example 101.4 °C):

<Device><ControlledValues><Temperature><CurrentValue>101.4</CurrentValue></Temperature><
/ControlledValues></Device>

When the device parameter or variable does not exist, the device must respond with “ERR”.

GUS_SetParameter

The value of some parameters can be set by the supervisory program. This is only possible and
allowed when the respective property of the parameter is set correctly:

<IsReadOnly>false</IsReadOnly>

Taking the example from above, the command from the supervisory program could be:

<Device>
<ControlledValues>

<Temperature>
<DemandValue>150.0</DemandValue>

</Temperature>
</ControlledValues>

</Device>



Author: Ben Haest 17 2019-01-17

Then the parameter string of the command “GUS_SetParameter” must be:

<Device><ControlledValues><Temperature><DemandValue>150.0</DemandValue></Temperature>
</ControlledValues></Device>

This command sets the setpoint of the temperature control in the climatic chamber to +150.0°C.
When the device parameter or variable does not exist or is read-only, the device must respond with
“ERR”.



Author: Ben Haest 18 2019-01-17

Appendix VI: Time and Date Format

ISO 8601 General Principal

Date and time values are ordered from the largest to the smallest unit of time:
year, month, (eventually: week), day, hour, minute, second.
Each date and time value has a fixed number of digits that
must be padded with leading zeros.
Representations can be done in one of two formats – a basic format with a minimal number
of separators or an extended format with separators added to enhance human readability.
For reduced accuracy any number of values may be dropped from any of the date and time
representations, but in the order from the least to the most significant.
If necessary for a particular application, the standard supports the addition of a decimal
fraction to the smallest time value in the representation.
Weeks are numbered from 01 to 53 and are preceded with “W”.

Examples

Combined date and time:

YYYMMDDThhmmss.sss or YYYY-MM-DDThh:mm:ss.sss

YYYMMDDThhmm or YYYY-MM-DDThh:mm

Example date:

YYYYMMDD or YYYY-MM-DD

Exception: YYYYMM is not allowed. Must always be: YYYY-MM

YYYYWxx or YYYY-Wxx (note: xx = week number 01 through 53)

YYYYWxxD or YYYY-Wxx-D  ( note: D = weekday numbered 1 through 7)

Example time:

hhmm or hh:mm

hhmmss or hh:mm:ss


